N86 - 29387 LIFE-CYCLE COSTS OF HIGH-PERFORMANCE CELLS

1, 1 .

JET PROPULSION LABORATORY

Ron Daniel Dale Burger Leonard Reiter

Introduction

- Value of PV system must include all costs and revenues associated with the system over its lifetime
- Methodology used in this study determines:
 - (1) The value of improvements to the lifetime power output of a PV system
 - (2) How much additional expense could be added during cell and module fabrication to achieve that added performance
- How does the initial cost relate to the final value?

Study Activities

- To compare the NPV of the life-cycle cost of four PV module production technologies
 - (1) 1985 MY SOA Cz at 5 MW annual prod.
 - (2) 1992 MY SOA Cz at 25 MW annual prod.
 - (3) 1992 MY high-eff. Cz at 25 MW annual prod.
 - (4) 1992 MY high-eff. web at 25 MW annual prod.
- Look at various module and system configurations:
 - Large and standard module size
 - Series parallel circuitry
 - Cross strapping
 - Bypass diodes around each cell
 - Series parallel modules
 - Bypass diodes around each series block, module and parallel module group
- Module replacement
 - Cell failure (opens only; 1 per 10,000 per year), causing module back bias of 0.5 volt

Methodology

- Use three PA&I-developed simulation models
 - PVARRAY system array performance
 - SAMICS simulated module manufacturing industry
 - LCP simulates the energy output, cost and value of a PV power plant over its useful lifetime

PV Array Design Economic Evaluation Methodology

PVARRAY Terminology

PVARRAY Module Configurations

Input Parameters

LCP

Mfg. yr	1985	1992
ABOS (\$/m ²)	115	60
PBOS (\$/kW)	600	150
0&M (\$/m2/yr)	1.30	1.30

Rate Structure (ϕ /kWh) - 8.5 peak, 7.1 mid-peak, 6.0 off-peak insulation - 2300 kWh/yr

NPV

Inflation rate — 5% Discount rate — 9% Depreciation — 15-yr life

CHAMBER TOTAL

SAMICS: SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS ICP: LIFETIME COST AND PERFORMANCE MODEL

LANGE THE MENT OF THE

PROCESS DEVELOPMENT

	SOA Cz		High-Efficiency Cz	
Mfg. γr	1985	1992	1992	
Mod. Size	1.2 x 1.2 m	1.2 x 1.2 m	1.2 x 1.2 m	
Cell Eff.	11.9%	11.9%	18.7%	
Mod Eff.	9.5%	9.5%	16.2%	
Wp/Mod.	147	147	233	
Annual Prod.	5 MW	25 MW	25 MW	
Si Cost, 82\$	\$34 /kg	\$18/kg	\$18/kg	
Value Added				
\$/Wp	3.52	2.40	1.65	
\$/m ²	359	245	2′	

Sensitivity of Net Benefit to Module Cost Change

Sensitivity of Net Benefit to Efficiency Change

Surnmary

- Models PVARRAY, SAMIS and LCP provide a tool for evaluating PV technologies and PV systems
- Two evaluation rankings possible, system performance and NPV
- Can identify system and performance tradeoffs

Preliminary Conclusions

- Parallel redundancy recommended
- For large modules, value of bypass diodes is marginal
- High efficiency and lower module cost are needed for PV to be economically attractive

Future Work

- High-efficiency web
- Standard-size modules (0.30 × 1.2 m)
- Cross strapping
- Diodes around series blocks and individual cells
- A look at several specific processes and their effects on module cost and efficiency